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Abstract

Finite element models have been used by many authors to provide accurate estimations of coupling loss factors.

Although much progress has been achieved in this area, little attention has been paid to the influence of uncertain

parameters in the finite element model used to estimate these factors. It is well known that, in the mid-frequency range,

uncertainty is a major issue. In this context, a spectral element method combined with a special implementation of a fuzzy-

set-based method, which is called the transformation method, is proposed as an alternative to compute coupling loss

factors. The proposed technique is applied to a frame-type junction, which can consist of two beams connected at an

arbitrary angle. In this context, two problems are investigated. In the first one, the influence of the confidence intervals of

the coupling loss factors on the estimated energy envelopes assuming a unit power input is considered. In the other

problem the influence of the envelope of the input power obtained considering the confidence intervals of the coupling loss

factors is also taken into account. The estimates of the intervals are obtained by using the spectral element method

combined with a fuzzy-set-based method. Results using a Monte Carlo analysis for the estimation of the coupling loss

factors under the influence of uncertain parameters are shown for comparison and verification of the fuzzy method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical energy analysis (SEA) has been established as a powerful technique to address dynamic problems
in the high-frequency range. Finite element analysis (FEA) has also been considered as a standard
methodology to assess problems in the low-frequency range. Broadly speaking, both techniques work well in
their respective frequency ranges. On the other hand, it is also well known that in order to extend the
applicability of SEA and FEA methods, i.e., SEA for low and mid-frequency ranges and FEA for mid and
high frequencies, some theoretical and numerical restrictions are found.

Basically, for SEA applications, if the main assumptions are filled out, which is usually the case only at high
frequencies, the method works according to the theory [1]. For FEA, two main restrictions are well known: the
first concerns the number of elements needed to describe the characteristic wavelength of the propagating
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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vibrational waves, which in the mid-high-frequency range becomes much smaller than the dimensions of the
structure. Therefore, a good model requires an excessively large number of finite elements. The second
limitation is due to the influence of the parameter uncertainty upon the dynamic responses.

Moreover, and in the same context, FEA has also been successfully applied for the estimation of the SEA
coupling loss factors (CLFs) between two subsystems [2–5]. The vibrational energy transmission between
strongly coupled subsystems based on energy flow methods (EFM) has also been investigated using results of
FEA, for example the energy influence coefficients (EIC) and power influence coefficients (PIC) derived from
modal analysis [6,7]. Recently, the so called virtual/experimental SEA based on FEA was also proposed to
estimate the coupling loss factors [8]. In this method, the idea adopted to estimate the coupling loss factors is
based on the experimental concept of the power injection method (PIM). In order to assess those factors, the
energy responses of a number of subsystems are found considering spatially incoherent excitation (rain-on-the-

roof ) applied to a given subsystem. By doing so, the input powers and energies can be estimated by
postprocessing the FEA data. In Ref. [9], the estimation of the coupling loss factors is computed using the
spectral element method (SEM), where continuous elements replace an infinite number of finite elements,
leading to an exact solution under the assumptions of the underlying theory.

Although some progress has been achieved, little attention has been paid, in this context, to the influence of
the uncertain parameters in the finite element or the spectral element model used to estimate the coupling loss
factors. This paper addresses the assessment of the coupling loss factors taking into account the influence of
the uncertainty of parameters. Other related work in the literature can be found in Refs. [10,11], where
statistical and interval analysis of energy flow between uncertain vibrating systems are investigated.

For this sake, in this paper the spectral element method is combined with a special implementation of the
extension principle of fuzzy sets [12] in order to form what we have called the spectral element method
combined with fuzzy-set-based method, or spectral element method/fuzzy, for simplicity. The proposed
methodology is applicable in early design stages, when statistical data is not yet available. Thus, the main
objective in this paper is to provide information about the confidence limits of the SEA coupling loss factors
estimated by the spectral element method combined with a fuzzy-set-based method and their effect in the
energy levels predicted using a SEA model.

In Section 2, a brief review of the spectral element method applied to beams is given. In Section 3, the
extension principle is reviewed. In Section 4, the spectral element method/fuzzy method is summarized.
Finally, a test problem with an application of the spectral element method/fuzzy method for the estimation of
SEA coupling loss factors for frame-type coupling is presented.

2. The spectral element method applied to beams

In this section, the spectral element method is applied to beams based on the elementary Bernoulli–Euler
theory, which implies that the effects of the shear deformation and the rotational inertia are neglected.
Spectral elements for higher-order beam theories can be found in the literature [13]. The basic idea of the
spectral element method is to combine the advantages of analytical spectral analysis with the efficiency and
organization of the finite element method (FEM). The main advantage of the spectral element method in
comparison to FEM is the fact that the spectral element dynamic stiffness matrix is computed in the frequency
domain, which allows the stiffness and the inertia of the distributed-parameter system to be described exactly.
Thus, it is not necessary to refine the mesh as the wavelength becomes smaller.

The spectral element method is completely formulated for spatial frame-type structures, but for two and
three-dimensional elements such as plates, shells and solids, no general formulation exists. Some spectral
element formulations exist for plates and shells, but with severe limitations concerning the geometry and the
boundary conditions of these elements. For example, simple thin flat plate spectral elements exist for
structures that are simply supported along two parallel sides (Levy plates), but general plate elements depend
on Fourier expansions which make the formulation more complex, the resulting dynamic stiffness matrices
much bigger, and results are not analytically exact any more. In general, spectral elements can only be
assembled along one dimension, and analytical solutions must be found in the plane orthogonal to this
direction. The main drawback of spectral element method is that it is only applicable to simple geometries and,
sometimes, specific boundary conditions.
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For the Euler–Bernoulli beam element, the following equation of motion can be derived,

q2

qx2
EI

q2v

qx2

� �
þ rA

q2v

qt2
¼ qðx; tÞ � qv �

qqf

qx
, (1)

where E is the Young’s modulus, I is the inertia moment and A is the area of the cross-section, r is the mass
density, v is the transverse displacement,and qðx; tÞ is the external force, which can be separated in the
distributed transverse load qvðx; tÞ and distributed torque qf.

Now, assuming that the beam treated here has constant properties along its length, the following
homogeneous differential equation is defined:

d4v̂

dx4
� b4v̂ ¼ 0. (2)

Considering Eq. (2), the particular solutions are found based on solutions of the two equations described by

d2v̂

dx2
þ b2v̂ ¼ 0 and

d2v̂

dx2
� b2v̂ ¼ 0, (3)

with the following wavenumbers:

k1 ¼ �b; k2 ¼ �ib and b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rA� ioZA

EI

r
, (4)

where Z is the material loss factor. Following that, the complete solution can be written using the spectral
representation as

vðx; tÞ ¼ S½Ae�ibx þ Be�bx þ Ceibx þDebx�eiot, (5)

where A, B, C and D are the complex wave amplitudes at each frequency.
In order to develop the dynamic stiffness for a 2-noded element of length L, with displacements v̂i and node

rotation f̂i, the following expressions are defined:

v̂ð0Þ � v̂1; f̂ð0Þ � f̂1; v̂ðLÞ � v̂2 and f̂ðLÞ � f̂2. (6)

By using Eqs. (6) and (5), the coefficients A, B, C and D can be found. By using Eq. (5), the displacements v̂i

and f̂i at any arbitrary point along the beam can be calculated by

v̂ðxÞ ¼ ĝ1ðxÞv̂1 þ ĝ2ðxÞf̂1 þ ĝ3ðxÞv̂2 þ ĝ4ðxÞf̂2, (7)

with f̂ðxÞ ¼ qv̂ðxÞ=qx. The functions ĝi are the frequency-dependent shape functions, which can be found in
Ref. [13]. The nodal loads are then written in terms of the displacement degrees of freedom (dofs) as

V̂ ðxÞ ¼ �EI
q2f̂
qx2

; M̂ðxÞ ¼ EI
qf̂
qx

. (8)

Applying the boundary conditions to the beam, the dynamic stiffness relation can be written as

V̂1

M̂1

V̂2

M̂2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

EI

L3
½k̂B
�

v̂1

f̂1
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f̂2

8>>>><
>>>>:

9>>>>=
>>>>;
, (9)

which can be re-written in a compact form as

fF̂g ¼
EI

L3
½k̂B
�fûg, (10)

where ðEI=L3Þ½k̂B
� is defined as the dynamic stiffness matrix of the two-noded Bernoulli–Euler beam element.

k̂B is a ½4� 4� symmetric matrix which, in general, is complex. For the throw-off elements, waves propagate in
only one direction and, hence, they can be obtained by setting C ¼ D ¼ 0 in Eq. (5). The throw-off elements
are used to represent infinite beams, which conduct energy out of the system.
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When it can be formulated, a spectral element is equivalent to an infinite number of finite elements, as
shown by Doyle [13]. Thus, the problem of mesh refinement for higher frequencies is no longer an issue. This is
the reason for using spectral element method to model the frame structure and obtain the coupling loss factors
in this work. For more complex structures, such as 3D frames, please refer to Refs. [14,24].

3. Fuzzy sets using the extension principle

Fuzzy set theory has been proposed in the literature as a methodology that can be very helpful to analyze
systems with respect to uncertain model parameters. In the context of engineering applications, a fuzzy model
adopted for a dynamic problem can be used to determine the range of results or simply the intervals of
confidence, considering non-uniform materials, manufacturing tolerances and other uncertainties.

The fuzzy concept has its foundation in the fuzzy logic theory introduced by Zadeh [12]. One important
aspect in this theory is that incomplete information can be described in a non-probabilistic form. Such an idea
has become very popular, especially when applied to engineering problems. This is in contrast with the
probabilistic theory, where more information is needed in the design process in the form of probability density
functions (PDF). On the other hand, considering an initial phase of a design process, when little information is
available, the concept of possibility theory adopted in the fuzzy-set methods is, in general, more appropriate.

In terms of framework, a fuzzy set is also considered as an extension of the classical set theory. In this
context, Zadeh’s extension principle [12] provides the fundamental basis for fuzzy-set methods, as it states that
real valued functions can be extended to functions of fuzzy numbers. Fuzzy-set-based methods, often referred
to as possibility theory, emerged from the work of Zadeh [12]. Fuzzy set theory is especially well suited for
dealing with forms of uncertainty that are inherently non-statistical in nature. Instead of producing single
intervals as outputs, possibility theory based on fuzzy sets permits gradations of possibility.

In the following, we recall the extension principle (see Ref. [15]). From a mathematical point of view, we can
define ~A1; . . . ; ~Ad as the d fuzzy sets with the membership functions m1; . . . ; md defined on the universes
X 1; . . . ;X d , respectively, and f : X 1 � � � � � X d ! Y as the objective function that maps the universes X 1 �

� � � � X d over the universe Y , i.e., y ¼ f ðx1; . . . ;xdÞ and y 2 Y . Thus, the fuzzy image ~B can be obtained from

~B ¼ fðy;m ~BðyÞÞjy ¼ f ðx1; . . . ;xdÞ; ðx1; . . . ;xd Þ 2 X 1 � � � � � X dg,

with

pðx1; . . . ;xdÞ ¼ minðm1ðx1Þ; . . . ;md ðxdÞÞ,

m ~BðyÞ ¼

sup
y¼f ðx1;...;xd Þ

ðpðx1; . . . ; xdÞÞ if 9y ¼ f ðx1; . . . ;xdÞ;

0 otherwise:

8<
: ð11Þ

Considering that the fuzzy sets ~A1; . . . ; ~Ad are convex fuzzy sets with compact support and the objective
function defined as f : X 1 � � � � � X d ! Y is continuous, then the following alternative formulation is
equivalent to Eqs. (11) [16].

~B ¼ fðy;m ~BðyÞÞjy 2 Y g; with

m ~BðyÞ ¼
supfajy 2 Bag ify 2 B0;

0 otherwise;

(

Ba ¼ min
x2Oa

f ðxÞ;max
x2Oa

f ðxÞ

� �
; 0pap1. ð12Þ

In Eq. (12), Oa ¼ ðA1Þa � � � � � ðAdÞa, 0pap1, denote the interval boxes formed by the a-cuts ðA1Þa; . . . ; ðAdÞa.
The extension principle can be more easily treated by a numerical algorithm based upon the alternative

formulation than the original formulation by Zadeh, Eq. (11). On the other hand, modern algorithms for
fuzzy sets are based on point-based methods, such as the transformation method proposed by Hanss [17,18].

In the context of this present work, Eq. (12) is applied based on the idea that the d uncertain input
parameters of the dynamic system problem ~p1; . . . ; ~pd are discretized into a-cuts to form the boxes Oa.
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Furthermore, to compute the upper and lower bounds ½a; b� of the a-cuts, we have to solve a global
optimization problem that finds the minimum and maximum taking into account the influence of the uncertain
input parameters.
3.1. Implementation of the extension principle

In what follows, a brief description of the general transformation method is presented. However, instead of
applying the proposed method as presented by Hanss [17,18], an improvement suggested by Klimke [19] is
introduced, which is called the transformation method without recurring permutations or simply the gtrmr.

The general transformation method proposed by Hanss [17,18] can be considered as the first
implementation of the extension principle that discretizes the convex fuzzy sets into a-cuts, and then
discretizes the a-cuts into sets of points. In the work by Hanss [17] this process is described based on
subdividing the axis for the degree of membership m into a number of m segments, equally spaced by
Dm ¼ 1=m. Such an alternative is based on the practice of sampling analog signals, which consists in describing
the fuzzy number in a discrete form. Moreover, the mþ 1 levels of membership mj for a given a-cut at the level
a-level 2 ½0; 1� are then given by

mj ¼
j

m
; j ¼ 0; 1; . . . ;m. (13)

One important point to add is that, in the fuzzy application, the intervals of confidence are simply called a-cuts
with the a-level a ¼ j=m 2 ½0; 1�. According to Hanss [17], this discretization is also called in the literature as
a-cut representation or a-sublevel technique. In this case, the fuzzy number to be implemented either using an
approximation by discrete numbers or decomposed into a number of intervals, for instance ½aj ; bj

�, ajpbj,
j ¼ 0; 1; . . . ;m given by a-cuts and the a-levels mj. To illustrate this idea, Fig. 1 shows an implementation of a
fuzzy number ~p using decomposition into intervals by the discrete fuzzy numbers representation [17].

In the same context, Hanss [17] also proposed the reduced transformation method, which can be considered
as an improved version of the classical fuzzy weighted averages (FWA) algorithm by Dong and Wong [20] that
ensures convexity of the fuzzy results. Only the lower and upper bounds of the interval at membership level mj

for the ith uncertain model parameter are considered. In the case of the general transformation method, the
mid-point between the lower and upper bounds is also considered. Fig. 2 shows the idea of removing recurring
points in detail.
Fig. 1. Implementation of a fuzzy number ~p decomposed into intervals.
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Fig. 2. General transformation method and its recurring points [19].
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Nevertheless, due to the discretization scheme, only convex fuzzy sets ~A with bounded support and a
single value m with m ~AðmÞ ¼ 1 may be used as inputs. In terms of accuracy, the results can be made arbi-
trarily accurate by letting the number of a-cuts m tend to infinity, but at the cost of a higher computational
cost.

One important point to mention, in terms of practical applications, is that the number of function
evaluations N is responsible for the cost of the general transformation method. Here, instead of applying the
original method proposed by Hanss [17], the general transformation method that eliminates recurring
permutations proposed by Klimke [19] is adopted.

In order to check the number of function evaluations N, the following expressions are used for the gtrm:

N ¼
Xm

k¼1

kd (14)

and for the gtrmr,

N ¼ ðm� 1Þd þmd , (15)

with m denoting the number of a-cuts and d the number of uncertain parameters.
For instance, as shown in the work of Klimke [19], for d ¼ 2 and 100 a-cuts, the number of function

evaluations of the original form of the general transformation method (gtrm) is 17:1 times bigger than N for
the proposed method avoiding additional functions evaluations for recurring combinations (gtrmr). For the
same example, however, with 10 a-cuts, a factor of 2.1 is found. Therefore, one general conclusion is that, in
the case where the number of a-cuts is large compared with the number of uncertain parameters, a better
performance is found with the gtrmr. However, in the case of a less regular distribution of the inner points, it is
suggested to increase the number of a-cuts instead of keeping it constant as in the original method.

In addition, it is important to point out that the recent extended transformation method proposed by Hanss
[21] cannot reduce the computational effort to less than N ¼ md function evaluations (even if monotonicity is

detected). For non-monotonic behavior, the computational effort is significantly higher, i.e., N ¼
Pm

k¼1m
d . In

the case of the reduced transformation method, this number for the dimension d is defined by N ¼ m2d . In this
paper, the general transformation method considering recurring permutations according to Klimke [19] is
chosen to be combined with the spectral element method.
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3.2. Computing the SEA coupling loss factors using the spectral element method combined with a fuzzy-set-based

method

In this section, a step-by-step procedure is presented for the implementation of the spectral element method
combined with the general transformation method without recurring permutations gtrmr in the context of the
fuzzy-set theory. For additional information about the performance of the gtrmr, see Ref. [15], where the
present method is also compared to the reduced method, the sparse grids approach and to the crude Monte
Carlo analysis. In Ref. [15] it was demonstrated that even when considering many samples using Monte Carlo
simulation, for the two tests proposed, fuzzy-set-based methods (gtrmr) and sparse grids performed better
than Monte Carlo.

At first, a brief review of the main equations proposed by Stimpson and Lalor [22] for performing a
sensitivity analysis of the coupling loss factors is given. According to the PIM the inverse of the energy matrix
should be solved to obtain the coupling loss factors. The sensitivity of the inverse of the energy matrix with
respect to the different subsystems energies is used. The sensitivity of element Eij of the normalized energy
matrix with respect to element Emn can be given by [22]

q½En��1ij

qEn
mn

¼ �
XN

p¼1

XN

q¼1

½En��1ip

q½En�pq

qEn
mn

½En��1qj , (16)

where the contributions of the p and q lines and columns of the energy matrix are incorporated. In this
expression, the term Eij is the energy of subsystem i when power is input into subsystem j and the normalized
term En

ij is given by

En
ij ¼

oEij

Pi
in

. (17)

For the coupling loss factors, a similar expression could be written as

qZji

qEn
mn

¼
X

p

X
q

ZjqdmpdnqZpi; iaj, (18)

where dij is Kronecker delta. For a two-subsystem SEA model this expression can still be simplified and
written as

qZji

qEn
mn

ffi ZmiZjn; iaj. (19)

Using the fact that the coupling loss factor matrix is predominated by the main diagonal, the last equation is
predominated by the terms n ¼ j and m ¼ i, and thus the variations in Zji is given by

DZji ffi En
ijZiiZjj ; iaj, (20)

where DZji is defined as the variation in the factor Zji. By making use of Eq. (20), the coupling loss factors can
be computed by [22]

ZSLji ffi
En

ij

En
iiE

n
jj

, (21)

where ZSLji gives the coupling loss factor estimated by Stimpson and Lalor.
In the approximation of Eq. (21), the terms Eji; iaj are not taken into account when calculating Zji, i.e. E21

is not needed for the calculation of Z21. When Eq. (21) is used, it is not necessary to solve the linear system of
equations of the PIM method and, thus, the condition number of the PIM energy matrix is not relevant, which
could, otherwise, reach high values and cause numerical instability. Using the spectral element method, nodal
forces are applied to two beams of the L-beam structure used in this paper at the two different directions and
the frequency response functions (FRFs) are calculated. Then, these frequency response functions are used to
calculate the total energies (kinetic+potential) of the different subsystems of the L-beam model, see Ref. [24].
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These subsystems are characterized by the longitudinal and transverse wave propagation in each beam. Then,
these energies are inserted in Eq. (21) for the calculation of the different coupling loss factors.

In what follows, Eqs. (21) and (17) are used for the computation of the coupling loss factors using the
proposed spectral element method/fuzzy method. As described in Ref. [15], this can be done by a three-step
procedure:

Step 1: Discretization process. First, the frequency range ½f 0; f 1� is divided into s logarithmically spaced steps
or 1=3-octave bands, which is more convenient for SEA application, with the central frequency defined by f i,
i ¼ 1; . . . ; s. The d uncertain input parameters ~p1; . . . ; ~pd are discretized into N discrete parameter vectors pj,
j ¼ 1; . . . ;N, pj 2 O0 where for the general case, Oa ¼ ðA1Þa � � � � � ðAdÞa, 0pap1 denote the interval boxes
formed by the a-cuts ðA1Þa; . . . ; ðAd Þa. In this work, the transformation method removing the recurring
permutations is adopted. The number of discrete parameter vectors N is determined by the number of a-cuts m

chosen for the fuzzy number discretization.
Step 2: Model evaluation. The CLFðf i; pjÞ is computed for all s �N permutations. An efficient

implementation may vectorize the calls to the spectral element method model to treat multiple discrete
frequencies, or alternatively, several sets of parameter permutations at once.

Step 3: Coupling loss factor confidence limits. In this case, the resulting CLFðf i; pjÞ are used to compute an
approximate envelope. For each a-cut 2 ½0; 1�, where a must match the cuts selected for the discretization with
CLFaðf iÞ ¼ ½CLFa;minðf iÞ;CLFa;maxðf iÞ�, with

CLFa;minðf iÞ ¼ min
pj2Oa

CLFðf i; pjÞ (22)

and

CLFa;maxðf iÞ ¼ max
pj2Oa

CLFðf i; pjÞ. (23)

At the end of the process, the fuzzy-valued coupling loss factor response at any given frequency f i can be
composed from the a-level sets of CLFðf iÞa. Furthermore, the coupling loss factor envelopes for a given
interval of confidence a are easily obtained by plotting the two curves of the minimum and the maximum
coupling loss factor values CLFa;minðf iÞ and CLFa;maxðf iÞ, respectively, over the frequencies f i, i 2 ½f 0; f 1�.
Therefore, considering that the coupling loss factors are the main SEA parameters, the idea to assess the
envelopes is to provide more robust coupling loss factors to build an SEA model. In the next section, the
proposed method is applied to a frame-type structure consisting of two beams connected at an arbitrary angle.
4. Application to frame-type structures

4.1. Problem definition

In order to show the applicability of the proposed spectral element method/fuzzy method for the estimation
of SEA coupling loss factors of frame-type junctions, the example shown in Fig. 3 is presented.

Table 1 shows the physical properties for beams 1 and 2 with mean value and standard deviation for each
uncertain input parameter. Different parameterization schemes may be used for the frame junction depending
on the physics of the problem at hand. For the proposed example, the Young’s modulus ~E, mass density ~r and
(1)

1 3

4
5

x
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throw-off elements (1 & 4)

2-noded elements (2 & 3)

 (2)

(3)

(4)

beam 1 

be
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4Pin 

3

Pin
1

 θ θ

2

Fig. 3. Spectral element method (SEM) model for two beams connected at an arbitrary angle.
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Table 1

Physical properties: beams with non-deterministic input parameters

Parameter Mean value m̄ Standard deviation Dimension

E1;2 2:62� 109 10% N=m2

r1;2 1280 10% kg=m3

A1;2 1� 10�4 0 m2

Iz1;z2 8:33� 10�10 1% m4

L1;2 100 0 m

R.F. Nunes et al. / Journal of Sound and Vibration 307 (2007) 38–5146
moment of inertia in z direction ~Iz are treated as uncertain parameters. In this simulation, ~E1 ¼ ~E2 ¼ ~E,
~r1 ¼ ~r2 ¼ ~r and ~Iz1 ¼ ~Iz2 ¼ ~Iz. For the length of the rods L1;2 and the cross-section areas A1;2, the mean
values are assumed. In this study a simple, and not very realistic, uncertainty model was used only for the sake
of illustrating the proposed procedure.

The L-beam model shown in Fig. 3(b) consists of two semi-infinite beams, respectively, beam 1 and beam 2
connected at an arbitrary angle y. In this example an angle of 60	 is assumed. However, it is important to
stress that it is straightforward to address arbitrary angles and an arbitrary number of beams converging to
the junction with the SE model described here.

The SE model is composed of two 2-noded and two throw-off spectral elements as presented in Fig. 3(a).
Using SEA methodology, four subsystems are defined: two for longitudinal waves and another two for the
flexural waves in the x–y plane. To assess the total energy in each subsystem using the spectral element
method, power is input into each subsystem and then the energies are found for each input, as shown in
Fig. 3(b). The coupling loss factors for these subsystems are defined as follows:


 ZB1B2: coupling loss factor between flexural waves incident at beam 1 and flexural waves transmitted to beam

2.



 ZB1L2: coupling loss factor between flexural waves incident at beam 1 and longitudinal waves transmitted to

beam 2.



 ZL1B2: coupling loss factor between longitudinal waves incident at beam 1 and flexural waves transmitted to

beam 2.



 ZL1L2: coupling loss factor between longitudinal waves incident at beam 1 and longitudinal waves

transmitted to beam 2.

As discussed in Ref. [24], in terms of deterministic response, a good agreement with the coupling loss factors
was obtained using the spectral element method with the simplified expressions of Stimpson and Lalor [22] and
using the analytical expressions of Cremer and Heckel [23]. In the next section, the SEA coupling loss factors
will be estimated using the proposed spectral element method/fuzzy method with the simplified expression
defined in Ref. [22], so that a more robust estimation of the SEA coupling loss factors can be expected, instead
of just obtaining deterministic values.

4.2. Estimation of coupling loss factors using the proposed spectral element method/fuzzy method

In this section, the coupling loss factors estimated via the proposed spectral element method/fuzzy method
are presented. Coupling loss factor confidence limits are provided in order to be used in SEA models. A
frequency range is chosen from 1Hz to 5 kHz using 1=3-octave bands.

In addition, for each frequency band analyzed, the mean square energy values were computed by averaging
over 10 frequency lines. Figs. 4 and 5 show the main results found using the S&L approximation with spectral
element method/fuzzy method.

The energies for bending and longitudinal waves in beams 1 and 2 were computed from the spectral element
solution using the methodology explained by Ahmida and Arruda [24]. With an internal loss factor of
Z ¼ 0:001 in each beam, the energy in the throw-off elements could be neglected due to the length of the
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Fig. 4. Estimation of coupling loss factors using S&L approximation and their envelopes: (a) ZB1B2 and (b) ZB1L2. spectral element method-

nominal (solid), spectral element method/fuzzy (dotted-line) and spectral element method/Monte Carlo (dashed þ).
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nominal (solid), spectral element method/fuzzy (dotted-line) and spectral element method/Monte Carlo (dashed þ).
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two-noded elements, which is equal to 100m. The number of a-cuts used in the Fuzzy method is m ¼ 7 and the
membership functions are quasi-Gaussian shaped, clipped at plus and minus 3 standard deviations. The
results include the mean, maximum and minimum values for the coupling loss factors found for beam 1 and
beam 2 plotted versus the average modal overlap (AMO). In order to compute the modal overlap factor
(MOF), the following expression is adopted [1]:

MOF ¼ oZn, (24)

where Z is the loss factor and n is the total modal density of the L-beam system, which is composed of the
modal densities for the longitudinal and transversal waves. To assess the AMO, the central frequency band is
considered, and, for each frequency band analyzed, the mean values were computed over 10 frequency lines
within the band.

Also, a Monte Carlo analysis (MC) was conducted to check the results found using the proposed spectral
element method/fuzzy method. For the Monte Carlo analysis, considering the same uncertain parameters
defined in Table1, Gaussian normal distributions clipped at 3s-bounds were adopted. They were generated by
the pseudo-random number generator of MATLAB. In addition, to determine the required sample size, the
following expression, described by Maglaras [25], was used:

N ¼
1� P

P� COV2
P

, (25)
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with P defined as the anticipated probability of failure and COVP the desired coefficient of variation of
probability of failure. The coefficient of variation is defined as the standard deviation divided by the mean.
For instance, taking a probability of failure of 0:1 and a coefficient of variation of 0:1, we find, substituting
these values, a minimum required N of 900. In our case, just for simplicity, we assume a sample size of
N ¼ 1000.

In general, Figs. 4 and 5 show that the spectral element method/fuzzy and the spectral element method/
Monte Carlo yielded quite similar results, specially for higher AMO. However, in Figs. 5(a) and (b), for the
longitudinal waves, some difference at low frequencies can be observed between the spectral element method/
fuzzy and spectral element method/Monte Carlo results. In this context, it is important to add that, on the
basis of the transformation method, the overestimation effect is avoided. Additional work and comparison of
spectral element method/fuzzy with the classical spectral element method/Monte Carlo can be found in the
work of Nunes et al. [15], where accuracy, performance and scalability have been investigated.

In the next section, where the main purpose is to find the energy envelopes using the robust coupling loss
factors obtained in Figs. 4 and 5, we have used only the coupling loss factors found with the spectral element
method/fuzzy method. In order to assess the energy levels for the four sub-systems described above,
conventional SEA was adopted.

4.3. Estimation of the subsystem energies using the coupling loss factors obtained with the SEM/fuzzy method

Basically, in this section, the energy levels for two cases are estimated. In the first case, the coupling loss
factors obtained with the spectral element method/fuzzy method are combined with a unit power input to the
subsystem associated with transverse waves on beam 1 to assess the energy level envelopes, i.e., maximum,
mean and minimum values. In this regard, it is important to stress that, for the other 3 subsystems, the input
powers are not considered. In the second case, the power input envelopes due to the coupling loss factor
variation are taken into account when computing the energy envelope. The second case is treated in order to
show that the uncertainty in the input power due to coupling loss factor variation plays an important role in
SEA predictions. In a recent paper presented by Davis [26], the uncertainty in the predictions is presented as
three separate problems. The first problem concerns the uncertainty in the input power, which is shown to be
the major issue. The second problem regards the uncertainty in the transfer functions, and, finally, the third
deals with uncertainties in the definition of the SEA model and its subsystems. Here, the two examples
proposed are mainly focused on two of those three concerns, namely the uncertainty in the input power and
the uncertainty in the transfer functions, due to the influence of the uncertain physical parameters.

Figs. 6 and 7 show the results for the transversal and longitudinal vibration energies for beams 1 and 2 for
the first case, i.e., the energies were computed for a unit power input to the subsystem associated with
transverse waves on beam 1. In this first example, it is important to add that the effects of uncertain
parameters increases when the central frequency increases, which can be clearly observed in Figs. 6(b) and
7(b).

In the second example, the energy limits are obtained using the same coupling loss factors, but including the
envelopes obtained with the input powers, i.e., input powers max, min and mean. To assess those values of
input power, for each point mobility, the respective force and velocity are assessed using the following
expression:

Pin ¼
1
2
ReðFv�Þ, (26)

where F is the point force, in this example simulated with 1N, Re denotes the real part of a complex quantity
and v� is the complex conjugate of the velocity at the same point where the force acts. If the displacement u is
assessed, velocity can be computed as v ¼ iou, which leads to Pin=o ¼ �F ImðuÞ=2, where Im is the imaginary
part of the displacement at the node where the force is applied, which is always negative, so that the input
power is always positive.

Figs. 8 and 9 show the energy levels for the beams 1 and 2 using the coupling loss factors and power input
estimated with spectral element method/fuzzy. It should be noted that the envelope energies found considering
the power input to each subsystem have a greater influence in the final result than the direct effect of the
coupling loss factor variation.
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Fig. 7. Energy levels for the beams 1 and 2 using coupling loss factors estimated with spectral element method/fuzzy: (a) longitudinal

energy in beam 1 and (b) longitudinal energy in beam 2. Max and Min energies (dotted-line) and nominal energy (solid).
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Fig. 8. Energy levels for the beams 1 and 2 using coupling loss factors and power input estimated with spectral element method/fuzzy:

(a) transversal energy in beam 1 and (b) transversal energy in beam 2. Max and Min energies (dotted-line) and nominal energy (solid).
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Fig. 6. Energy levels for the beams 1 and 2 using coupling loss factors estimated with spectral element method/fuzzy: (a) transversal energy

in beam 1 and (b) transversal energy in beam 2. Max and Min energies (dotted-line) and nominal energy (solid).
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To summarize, both cases show that, using the spectral element method/fuzzy method, it is possible to take
into account the influence of the uncertain input parameters into a SEA model using a fuzzy description of the
parameter uncertainty. In addition, one important fact to add from the second case is that it is recommended
that such envelopes consider the input power envelopes. This is clarified based on results presented in
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Fig. 9. Energy levels for the beams 1 and 2 using coupling loss factors and power input estimated with spectral element method/fuzzy:

(a) longitudinal energy in beam 1 and (b) longitudinal energy in beam 2. Max and Min energies (dotted-line) and nominal energy (solid).
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Figs. 6(a) and 8(b). Thus, both coupling loss factor and input power envelopes can be computed via the
proposed spectral element method/fuzzy method, and the envelopes of the energy levels of subsystems
computed by SEA can be estimated.
5. Concluding remarks

The spectral element method (SEM) combined with a special implementation of fuzzy-set-based method is
proposed as an alternative approach to compute the SEA coupling loss factors. The spectral element method is
used to overcome some problems of excessive model size due to mesh refinement at higher frequencies, usually
observed in FEA. The fuzzy set approach based on the extension principle is used to treat the influence of
model parameter uncertainty. The idea is to estimate the coupling loss factors and their confidence limits
based upon possible parameter variations in the early stages of product development.

A simple numerical example consisting of two semi-infinite beams connected at an arbitrary angle was used
to assess the coupling loss factor variation in a frame-type junction due to physical parameter uncertainty. The
obtained results showed that, taking into account the influence of the uncertain input parameters according to
Table 1, the results presented significant variations in comparison with the nominal values. These variations
affect the subsystem energies predicted by the SEA model.

In this simple example, the variations assumed for the input uncertain parameters are taken as possible to
occur. When a new project is starting, not much information is available and uncertainty is predicted based
upon the experience in former projects. On the one hand, as the development cycle evolves and more
experimental data becomes available, a more accurate parameter variation prediction can be made. The
pressure to develop new products in shorter time means, in most cases, that there is no time to set up many
experiments to provide probability density functions (PDF) of model parameters. However, in the case when
input data with the associated probability density functions are available, more accurate models can be
obtained by combining both theories, i.e., possibility and probability. Therefore, for an initial estimation of the
influence of uncertain input parameters, the spectral element method combined with fuzzy-set-based method
proposed here can be helpful to address uncertainty in frame-type structures.
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